Bibliothèque de l'Institut des Sciences et de la Technologie
Détail de l'éditeur
|
Documents disponibles chez cet éditeur (1)
trié(s) par (Pertinence décroissant(e), Titre croissant(e)) Affiner la recherche Interroger des sources externes
Réseaux bayésiens avec R / Jean-Baptiste Denis
Titre : Réseaux bayésiens avec R Type de document : texte imprimé Auteurs : Jean-Baptiste Denis, Auteur ; Marco Scutari, Auteur Editeur : Les Ulis : EDP sciences Année de publication : 2014 Collection : Pratique R Importance : 240p. Format : 24 CM. ISBN/ISSN/EAN : 978-2-7598-1198-4 Note générale : Bibliogr. p. 229-236. Index Langues : Français (fre) Mots-clés : R (logiciel) Statistique bayésienne Index. décimale : 519.5 Résumé : Cet ouvrage introduit ses lecteurs à la découverte des réseaux bayésiens. À partir d'exemples simples, mais suffisamment complexes pour détailler les différents mécanismes en cause, les trois premiers chapitres présentent les réseaux bayésiens pour variables discrètes, variables gaussiennes et variables quelconques. Toutes les étapes de construction, de vérification des propriétés, d'estimation et d'interprétation sont illustrées par l'usage de fonctions R. Le but est de permettre aux lecteurs de reproduire la démarche pour leurs propres problématiques, en utilisant leurs propres données par simple adaptation de ce qui est présenté. Le quatrième chapitre propose un traitement concis mais rigoureux des théories mathématiques sous-jacentes couvrant la définition des réseaux bayésiens, les principaux algorithmes d'apprentissage de structure à partir de données et les requêtes d'exploration des propriétés d'un réseau estimé pour répondre à diverses questions concrètes. Le cinquième chapitre est dédié à une revue des principaux logiciels disponibles, en particulier des paquets R existant. Le sixième chapitre est le traitement en détails de deux situations réelles qu'ont abordées les auteurs dans leurs activités professionnelles, à l'aide des réseaux bayésiens. Il comprend également les principales commandes de R utilisées pour mener les calculs. Les cinq premiers chapitres comportent des exercices dont les solutions sont proposées en fin d'ouvrage. Deux annexes indépendantes sont consacrées à la théorie des graphes et aux distributions de probabilité majeures. Enfin, un glossaire des termes spécialisés employés tout au long de l'ouvrage est fourni ainsi qu'un index général, il contient en particulier les références de toutes les fonctions R invoquées. Les auteurs ont cherché à d'abord expliquer les concepts par l'intuition et l'exemple avant d'aboutir au formalisme mathématico-informatique. À la fois pratique et théorique l'ouvrage sera utile aussi bien aux chercheurs et ingénieurs qui doivent modéliser une situation incertaine ou interpréter des données où interviennent de nombreuses variables aléatoires qu'aux étudiants en mathématiques appliquées. Réseaux bayésiens avec R [texte imprimé] / Jean-Baptiste Denis, Auteur ; Marco Scutari, Auteur . - Les Ulis : EDP sciences, 2014 . - 240p. ; 24 CM.. - (Pratique R) .
ISBN : 978-2-7598-1198-4
Bibliogr. p. 229-236. Index
Langues : Français (fre)
Mots-clés : R (logiciel) Statistique bayésienne Index. décimale : 519.5 Résumé : Cet ouvrage introduit ses lecteurs à la découverte des réseaux bayésiens. À partir d'exemples simples, mais suffisamment complexes pour détailler les différents mécanismes en cause, les trois premiers chapitres présentent les réseaux bayésiens pour variables discrètes, variables gaussiennes et variables quelconques. Toutes les étapes de construction, de vérification des propriétés, d'estimation et d'interprétation sont illustrées par l'usage de fonctions R. Le but est de permettre aux lecteurs de reproduire la démarche pour leurs propres problématiques, en utilisant leurs propres données par simple adaptation de ce qui est présenté. Le quatrième chapitre propose un traitement concis mais rigoureux des théories mathématiques sous-jacentes couvrant la définition des réseaux bayésiens, les principaux algorithmes d'apprentissage de structure à partir de données et les requêtes d'exploration des propriétés d'un réseau estimé pour répondre à diverses questions concrètes. Le cinquième chapitre est dédié à une revue des principaux logiciels disponibles, en particulier des paquets R existant. Le sixième chapitre est le traitement en détails de deux situations réelles qu'ont abordées les auteurs dans leurs activités professionnelles, à l'aide des réseaux bayésiens. Il comprend également les principales commandes de R utilisées pour mener les calculs. Les cinq premiers chapitres comportent des exercices dont les solutions sont proposées en fin d'ouvrage. Deux annexes indépendantes sont consacrées à la théorie des graphes et aux distributions de probabilité majeures. Enfin, un glossaire des termes spécialisés employés tout au long de l'ouvrage est fourni ainsi qu'un index général, il contient en particulier les références de toutes les fonctions R invoquées. Les auteurs ont cherché à d'abord expliquer les concepts par l'intuition et l'exemple avant d'aboutir au formalisme mathématico-informatique. À la fois pratique et théorique l'ouvrage sera utile aussi bien aux chercheurs et ingénieurs qui doivent modéliser une situation incertaine ou interpréter des données où interviennent de nombreuses variables aléatoires qu'aux étudiants en mathématiques appliquées. Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité BST01181 519.5-05/01 LIVRE Bibliothèque ST 519.5:Statistique descriptive. Analyse de population. Disponible BST01182 519.5-05/02 LIVRE Bibliothèque ST 519.5:Statistique descriptive. Analyse de population. Disponible BST01183 519.5-05/03 LIVRE Bibliothèque ST 519.5:Statistique descriptive. Analyse de population. Disponible